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Abstract

Key message This is the first clear evidence of duplica-
tion and/or triplication of large chromosomal regions in
a genome of a Genistoid legume, the most basal clade of
Papilionoid legumes.

Abstract Lupinus angustifolius L. (narrow-leafed lupin)
is the most widely cultivated species of Genistoid leg-
ume, grown for its high-protein grain. As a member of

Communicated by A. H. Paterson.

Electronic supplementary material The online version of this
article (doi:10.1007/s00122-014-2294-y) contains supplementary
material, which is available to authorized users.

M. Kroc - W. gwiccicki
Department of Genomics, Institute of Plant Genetics, Polish
Academy of Sciences, Strzeszynska 34, 60-479 Poznan, Poland

G. Koczyk

Department of Biometry and Bioinformatics, Institute of Plant
Genetics, Polish Academy of Sciences, Strzeszynska 34,
60-479 Poznan, Poland

A. Kilian
Diversity Arrays Technology Pty Ltd, 1 Wilf Crane Crescent,
Yarralumla, Canberra, ACT 2600, Australia

M. N. Nelson
School of Plant Biology, The University of Western Australia,
35 Stirling Highway, Crawley, WA 6009, Australia

M. N. Nelson (D7)

The UWA Institute of Agriculture, The University of Western
Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
e-mail: matthew.nelson@uwa.edu.au

this most basal clade of Papilionoid legumes, L. angus-
tifolius serves as a useful model for exploring legume
genome evolution. Here, we report an improved refer-
ence genetic map of L. angustifolius comprising 1207
loci, including 299 newly developed Diversity Arrays
Technology markers and 54 new gene-based PCR mark-
ers. A comparison between the L. angustifolius and Med-
icago truncatula genomes was performed using 394
sequence-tagged site markers acting as bridging points
between the two genomes. The improved L. angustifolius
genetic map, the updated M. truncatula genome assem-
bly and the increased number of bridging points between
the genomes together substantially enhanced the resolu-
tion of synteny and chromosomal colinearity between
these genomes compared to previous reports. While a
high degree of syntenic fragmentation was observed
that was consistent with the large evolutionary distance
between the L. angustifolius and M. truncatula genomes,
there were striking examples of conserved colinearity of
loci between these genomes. Compelling evidence was
found of large-scale duplication and/or triplication in
the L. angustifolius genome, consistent with one or more
ancestral polyploidy events.

Introduction

Narrow-leafed lupin (Lupinus angustifolius L.) is one of
four lupin grain crop species that together produce around
1.1 million tonnes of grain annually (FAO 2011). It was
first cultivated as a green manure and forage crop in the late
nineteenth century in Northern Europe and only became
a significant grain crop as domestication traits including
reduced seed alkaloids were incorporated through system-
atic breeding efforts in Europe and Australia (Berger et al.
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2012; Brummund and Swiecicki 2011; Wolko et al. 2011).
Currently, narrow-leafed lupin grain is produced mainly in
Australia and Eastern Europe for animal feed though there
is increasing interest in its use in the human diet due to its
high protein and fibre content, and low glycaemic index
(Foley et al. 2011).

Narrow-leafed lupin is a diploid, self-pollinating
legume species (2n = 40) with an estimated physical
genome size of 924 Mb (1C, cv. Sonet) (Kasprzak et al.
2006). It belongs to the genus Lupinus L. which com-
prises around 267 species including both annual and per-
ennial species and ranging from tiny herbaceous plants
to medium-sized trees (Drummond et al. 2012). Lupinus
has among the highest speciation rates known for any
genus with particular rapid speciation observed in the
Andes (Hughes and Eastwood 2006). Lupinus is part of
the basal tribe Genisteae within the phylogenetic clade
Genistoid in the Papilionoideae subfamily of legumes
(Drummond et al. 2012; Lavin et al. 2005). Lupins are
highly diverged from all the agriculturally important leg-
umes and model species, most of which belong to two
other Papilionoideae clades: Galegoid (cool season leg-
umes) and Phaseoloid (warm season legumes) clades
from which they separated about 56 million years ago
(Lavin et al. 2005; Zhu et al. 2005).

Polyploidy has played a crucial role in angiosperm
genome evolution including the genus Lupinus. Multiple
rounds of polyploidy provide a rich source of gene redun-
dancy that permits rapid diversification of function and/or
expression of genes and contributes to the genome plas-
ticity of angiosperms (Leitch and Leitch 2008). A whole
genome duplication (WGD) event was associated with the
origin of the angiosperms (De Bodt et al. 2005). An anal-
ysis of a large sample of plant transcriptomes revealed
evidence of a whole genome triplication (WGT) event
associated with the early diversification of the eudicots
(Jiao et al. 2012). Recent studies confirm the occurrence
of a further whole genome duplication (WGD) event early
in Papilionoid legume evolution, which may also have
included the basal Genistoid clade containing the Lupi-
nus genus (Cannon et al. 2010; Young and Bharti 2012).
An additional WGD event occurred in the lineage of Gly-
cine max around 13 million years ago (Schmutz et al.
2010). The occurrence of additional Genistoid-specific
polyploidy event(s) in the genus Lupinus is supported
by variation in chromosome numbers, nuclear DNA con-
tent, duplication of isozyme markers and DNA markers,
and duplicated genes in transcriptome and genome survey
sequences (Naganowska et al. 2003; Nelson et al. 2006;
Parra-Gonzalez et al. 2012; Wolko and Weeden 1989;
Yang et al. 2013). However, Nelson et al. (2006) found
little evidence of conserved genetic linkage between
58 pairs of duplicated markers which indicated that this
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additional polyploidy event(s) in the Lupinus lineage was
likely to be ancient.

Comparative mapping and synteny analysis are pow-
erful tools for evaluating evolutionary relationships
among related taxa and for understanding the structural
changes that differentiate the genomes of present-day
species (Bertioli et al. 2009; Ellwood et al. 2008; Young
and Bharti 2012). Genome conservation of related spe-
cies has been demonstrated in many plant families with
Poaceae, Brassicaceae and Solanaceae being well-known
examples (International_Brachypodium_Initiative 2010;
Lagercrantz and Lydiate 1996; Tomato_Genome_Consor-
tium 2012). In recent years, a growing number of stud-
ies also demonstrated substantial conservation among
legume genomes giving hope that genomic information
gathered from model genomes can be successfully applied
to crop legume improvement (Cannon et al. 2009; Choi
et al. 2004; Zhu et al. 2005). However, the ability to trans-
fer knowledge between species reduces as the extent of
structural changes increases (Bertioli et al. 2009; Cannon
et al. 2009). Since Lupinus diverged from the model leg-
ume species early in Papilionoid evolution, it is expected
that the many structural changes will differentiate the
Lupinus and model legume genomes. Although recent
studies confirm the widespread synteny among legumes,
the extent of conservation is still not well understood in
the Genistoid clade including the economically and eco-
logically significant genus Lupinus (Lambers et al. 2013).
Previous studies revealed short regions of conserved syn-
teny between the L. angustifolius and two model species:
Medicago truncatula and Lotus japonicus (Nelson et al.
2006, 2010). Similarly, the structure of the Lupinus albus
genome appears to be highly rearranged relative to the M.
truncatula genome (Phan et al. 2007). A low-density sur-
vey sequence of the L. angustifolius genome was recently
reported with a small proportion of scaffolds assigned to
linkage groups, but a synteny analysis to other legume
genomes was not attempted (Yang et al. 2013). Previous
synteny studies suffered from low resolution due to the
low number of bridging points, which in case of Nelson
et al. (2006) and Phan et al. (2007) was exacerbated by
the use of a rudimentary M. truncatula reference genome
sequence.

In the present comparative analysis, we employed an
improved genetic map of the L. angustifolius genome with
an almost threefold increase in the number of sequence-
based genetic markers. In addition, an improved assem-
bly of the M. truncatula genome (Young et al. 2011) was
enlisted in this updated synteny analysis. The study not
only improved the resolution of synteny between these two
genomes, but also revealed compelling evidence of one or
more ancient polyploidy events shaping the L. angustifolius
genome.
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Fig. 1 Linkage map of the Lupinus angustifolius genome comprising
1,200 markers and seven trait loci distributed over 20 linkage groups
(NLL-01 to NLL-20) and three small clusters (Cluster-1 to Cluster-3).
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Fig. 1 continued

Materials and methods
Mapping population

The mapping population used in this study consisted of
112 recombinant inbred lines (RILs), derived from a cross
between a domesticated line (83A:476) and a wild type
(P27255), and was developed at the Department of Agri-
culture and Food Western Australia (Perth, Australia). The
parental lines were selected on the basis of contrasting
phenotypes for domestication loci: Ku (reduced vernali-
sation requirement for flowering), iucundus (low alkaloid
content), lentus and tardus (both for reduced pod shatter-
ing), mollis (water-permeable seeds) and leucospermus
(visual marker for domestication conferring white flowers
and reduced pigmentation in many tissues). This mapping
population and phenotyping of the domestication traits and
anthracnose resistance locus Lanrl have been described in
detail in previous mapping studies encompassing different
subsets of RILs (Boersma et al. 2005, 2009; Li et al. 2011;
Nelson et al. 2006, 2010; Yang et al. 2004).

@ Springer

DArT markers

Diversity array technology (DArT) marker assay was per-
formed by Diversity Arrays Technology Pty Ltd (Canberra,
Australia) according to Jaccoud et al. (2001) and the pro-
tocols described by Kilian et al. (2012). Briefly, a genomic
representation of a mixture of DNA of both parental lines
was generated after PstI-Taql digestion (as a complexity
reduction method) and distributed on microarray slide.
The resulting array was used to genotype the fluorescently
labelled RIL individuals, prepared by using the same com-
plexity reduction method. A total of 299 polymorphic
loci were scored as present (1) or absent (2) with the aid
of dedicated software DArTsoft. Using the parental con-
trol samples, the scoring phase was determined for each
locus and data converted to ‘A’ (maternal parent allele) and
‘B’ (paternal parent allele). The DNA sequences of 149
DArT non-redundant clones were determined by conven-
tional Sanger sequencing and can be accessed at the GSS
database of GenBank (accession numbers KG701214 to
KG701371).
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Table 1 Summary of the updated reference genetic map of Lupinus angustifolius comprising 20 linkage groups (NLL-01 to NLL-20) and three

small clusters

Linkage Total marker Framework Redundant Attached Genetic Length Average Trait locus
group number markers® markers® markers® (cM) spacing? (cM)

NLL-01 108 72 28 8 187.5 2.64 Tardus
NLL-02 51 28 19 4 121.5 4.50

NLL-03 74 48 22 4 1344 2.86 Leucospermus
NLL-04 67 50 15 2 145.2 2.96

NLL-05 64 41 17 6 124.9 3.12

NLL-06 93 72 17 4 181.7 2.56

NLL-07 92 54 29 9 121.4 2.29 Tucundus
NLL-08 70 48 19 3 143 3.04 Lentus
NLL-09 51 34 11 6 115.6 3.50

NLL-10 49 26 15 8 88.7 3.55 Ku
NLL-11 83 45 32 6 112.7 2.56 Lanrl
NLL-12 43 28 8 7 108.9 4.03

NLL-13 43 31 8 4 106.4 3.55

NLL-14 33 23 5 5 98.5 4.48

NLL-15 43 34 7 2 92.9 2.82

NLL-16 42 26 11 5 100.9 4.04

NLL-17 63 31 29 3 101.4 3.38 Mollis
NLL-18 44 34 9 1 89 2.70

NLL-19 37 26 9 2 81.3 3.25

NLL-20 46 34 8 4 78 2.36

Cluster-1 5 4 1 0 7.8 2.60

Cluster-2 4 4 0 0 2.6 0.87

Cluster-3 2 2 0 0 1.4 1.40

TOTAL 1,207 795 319 93 2,345.7 2.95 7

* Framework markers are high-quality markers each with a unique position in the genetic map

® Redundant markers have identical positions as their respective framework markers

¢ Attached markers have ambiguous map positions and are placed in the most likely interval between framework markers

4 Marker distances are calculated between framework markers only

New PCR-based markers

New PCR-based STS markers comprised length polymor-
phism, SNaPshot (Life Technologies Inc., Foster City,
USA), cleaved amplified polymorphic sequence (CAPS)
or derived-CAPS (Neff et al. 2002). Table S1 details the
primer sequences, assay details and parental amplicon sizes
for new PCR-based markers. Parental amplicon sequences
can be accessed at the GSS database of GenBank (acces-
sion numbers KG701372 to KG701468).

Six new gene-based STS primer pairs (mtmt_EST_03396,
mtmt_DEG_03488, tRALS, mtmt_GEN_00650, SHK75
and mtmt_EST_03280) were developed within the Sixth
European Union Framework Programme’s Grain Legumes
Integrated Project (GLIP) and implemented in L. angusti-
folius using the method described by Nelson et al. (2010).
Seven new intron-targeted STS primer pairs designed to
amplify orthologous single or low copy genes LG1, LGI1,

LG13, LG16, LG75, LG96 and LG107) were provided by
Prof. Richard Oliver and Dr. Simon Ellwood (Curtin Uni-
versity, Perth, Australia). Thirty gene-based legume anchor
primer pairs (prefixed with “Leg”) were developed by Fred-
slund et al. (2006) and provided by Prof. Jens Stougaard
(University of Aarhus, Denmark) (Table S1). The marker
assay Gm56 targeting a candidate gene for pod shattering
was provided by Dr. Varma Penmetsa (UC Davis, USA).
Eight flowering time gene homologue markers (dFTa,
dFTb, dFTc, dSOC1, TFL1, VIN3, VIP3 and VRN1) were
developed by designing primers in conserved regions iden-
tified by aligning legume ESTs with Arabidopsis thaliana
flowering time genes with the aid of Vector NTI (Invitro-
gen, Carlsbad, California). The primer pair AC123593-13
was designed in the same way except using the M. trun-
catula BAC clone sequence AC123593 as the template.
The resulting PCR amplicons from parents 83A:476
and P27255 were sequenced to confirm the successful
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Fig. 2 Circos plot of synteny
between the Medicago trunca-
tula reference genome and the
Lupinus angustifolius genetic
map. Lines linking syntenic
regions are coloured according
to M. truncatula chromosome.
The chromosomes and linkage
groups are not drawn to scale

amplification of the targeted genes and to identify SNP pol-
ymorphisms, which were then assayed in the RIL popula-
tion using length, CAPS or dCAPS assays (Table S1). An
additional flowering time gene homologue marker devel-
oped for pea was also used (VRN2; Hecht et al. 2005).

Genetic mapping

The previous version of the L. angustifolius reference map
comprised 1,090 marker and trait loci (Nelson et al. 2010).
Seven trait loci and the highest quality markers from that
map were selected for this current study: 208 PCR-based
sequence-tagged site (STS), 157 restriction fragment length
polymorphism (RFLP) and 492 microsatellite-anchored
fragment length polymorphism (MFLP) markers (864 loci
in total; Table S1). When combined with the 353 new DArT
and PCR-based STS markers, there were 1,217 loci in total,
which were then subjected to linkage mapping.

Linkage mapping was performed with the aid of Mul-
tiPoint 2.1 (MultiQTL Ltd, Haifa, Israel), which uses the
‘evolutionary optimisation strategy’ (Mester et al. 2003) to
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Me.g

perform multi-locus ordering of linkage groups. We used
the approach described in detail by Nelson et al. (2010)
and Raman et al. (2012) with some modifications. Briefly,
redundant markers were set aside before commencement
of clustering analysis. Iterative clustering analysis was
conducted at a recombination frequency: rf = 0.12, 0.15
and 0.18 and then increased at 0.02 increments until a
maximum of rf = 0.28. At each stage, multi-point analy-
sis was conducted and resulting groups merged as rf was
incrementally increased. Jack-knife analysis was per-
formed on the rf = 0.28 linkage groups to identify mark-
ers that had a destabilising effect on locus order, which
were then temporarily set aside. The remaining markers
were used to construct the framework map with genetic
intervals size transformed to account for multiple meio-
ses involved in the development of the RIL population
and expressed in Kosambi centiMorgans (cM). Redundant
markers were then assigned to their representative frame-
work markers and destabilising markers were assigned
(or ‘attached’) to the most likely intervals between frame-
work markers.
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Fig. 3 Dot plot of Lupinus angustifolius linkage groups vs. Medicago truncatula chromosomes. Markers within L. angustifolius linkage groups
(x-axis) are presented in sequential order without scale. Positions of loci within M. truncatula chromosomes are drawn in base pair scale (y-axis)

Synteny analyses

DNA sequences corresponding from the STS markers
(PCR-based, RFLP and DArT) used to generate the genetic
map of L. angustifolius were used to identify orthologous
loci in the M. truncatula reference genome version Mt3.5.1
(Young et al. 2011) using BLASTn analysis with a mini-
mum e-value of 1 ¢~> and minimum bit score of 50. The two
most significant matches were retained for synteny analysis.

Patterns of conserved locus order between the L. angus-
tifolius and M. truncatula genomes were visualised using a
custom ggplot2 script (Wickham 2009), Strudel (Bayer et al.
2011) and Circos v0.63 (Krzywinski et al. 2009). For Circos
visualisation, the links were pre-processed with the “bundle-
links” utility script, grouping together markers mapped to the
same L. angustifolius linkage group and occupying positions
within M. truncatula genome spaced less than 100 kbp apart.

Results
An improved genetic map for Lupinus angustifolius

A new linkage map of narrow-leafed lupin genome
incorporating new PCR-based and DArT markers was

constructed with the aid of MultiPoint software. The map
comprised 1,200 markers and 7 trait loci distributed over
20 linkage groups (NLL-01 to NLL-20) and three small
clusters (Fig. 1; Fig. S1; Table S1). A further ten mark-
ers remained unlinked (Table S1). The new map was
2,345.7 cM in length with linkage groups ranging from
78 to 187.5 cM and the average spacing between unique
framework markers was 2.95 ¢cM (Table 1). The mark-
ers are well distributed with just 13 intervals exceeding
15 cM and 1 interval exceeding 20 cM (Fig. 1; Fig. S1).
All linkage groups contained at least one marker from the
major marker types (PCR-based STS, RFLP, DArT and
MFLP). The map included 566 markers with associated
DNA sequences that could potentially be used to align the
genetic map of L. angustifolius with the reference genome
sequence of the model legume M. truncatula.

Synteny between Lupinus angustifolius and Medicago
truncatula genomes

Synteny between the genomes of L. angustifolius and M.
truncatula was assessed by comparing the positions of
STS markers in the L. angustifolius genetic map with the
positions of putatively orthologous sequences in the refer-
ence genome of M. truncatula. Of the 566 STS markers
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Fig. 4 Examples of synteny between three linkage groups of Lupi-
nus angustifolius (NLL-08, NLL-10 and NLL-12) and three chromo-
somes of Medicago truncatula (Mtl, Mt4 and Mt7). The pod shatter
resistance gene, Lentus, is located on NLL-08, while the early flower-
ing gene, Ku, is located on NLL-10. Names of loci showing syntenic

mapped in L. angustifolius, 410 (72.4 %) found one or
more significant matches in the M. truncatula genome by
BLASTn analysis. Of these, 16 markers were excluded
from further analyses as they matched repetitive sequences
within the M. truncatula genome leaving 394 markers for
synteny analysis. Table S2 presents the BLASTn results
of 394 markers against the two most significant matches
in the M. truncatula genome. The primary match (i.e. the
most significant) was considered the ‘best match’ (i.e.
the most likely orthologous locus in the M. truncatula
genome) for 367 (93.1 %) markers. For 27 (6.9 %) mark-
ers the second most significant match appeared to be the
best match in the M. truncatula genome on the basis of
conserved synteny and colinearity relative to neighbouring
markers (Table S2).

Circos visualisation of genome-wide synteny revealed
the high level of fragmentation of genome structure
between L. angustifolius and M. truncatula with each M.
truncatula chromosome sharing syntenic regions with
two or more L. angustifolius linkage groups (Fig. 2).
Dot-plot analysis was then used to examine these

@ Springer

regions are shown next to the L. angustifolius linkage groups (scaled
in Kosambi centiMorgans, cM) and the start position of the homolo-
gous sequence on M. truncatula is presented next to each chromo-
some (scaled in megabases, Mb)

relationships in more detail (Fig. 3). At the segmental
level, syntenic regions could be detected in all 20 linkage
groups of L. angustifolius and all eight chromosomes of
M. truncatula (Mt1-Mt8). The longest conserved block
in the two genomes comprised 13 markers (NLL-09 and
Mt5; Fig. 3). When evaluating 160 pairwise chromo-
some comparisons defined as 20 L. angustifolius x 8 M.
truncatula chromosomes, there were 53 with at least 3
marker correspondences, indicating a high degree of syn-
tenic fragmentation. Mt4 was the chromosome with the
most correspondences (90) with L. angustifolius linkage
groups, whereas Mt6 had the fewest (12). Detailed exam-
ples of selected regions of the L. angustifolius genome
that showed extensive marker colinearity with Mtl, Mt4
and Mt7 are presented in Fig. 4. Four trait loci (tardus,
lentus, Lanrl and Ku) fell within, or adjacent to, con-
served syntenic blocks (Fig. 4; Fig. S1). Interestingly,
the flowering time gene homologue marker dFTc mapped
to the same genetic location as the flowering time locus,
Ku, with no recombination detected between the two loci
(Fig. 4).
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Fig. 5 Examples of duplica- Mt2
tion and triplication in the

Lupinus angustifolius genome a
detected by comparison with the

Medicago truncatula genome.

M. truncatula chromosomes

(Mt) are shown on the left of

each panel and L. angustifolius

linkage groups (NLL) on the

right, with homologous loci

in both genomes connected

by lines. Chromosomes and

linkage groups have normalised

total lengths and drawn to scale

within each chromosome (Mb

scale) and linkage group (cM

scale). Precise positions are pre-

sented in Table S2. a The top of

Mt2 shares synteny with NLL-

04 and NLL-16. b The bottom

of Mt3 shares synteny with Mt4
NLL-03, NLL-14 and NLL-15.

¢ The middle of Mt4 shares c
synteny with NLL-07, NLL-08

and NLL-13. d The top of Mt5

shares synteny with NLL-06,

NLL-17 and NLL-18
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/
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Evidence of triplication in the lupin genome

Strikingly, there were several instances of large M. trun-
catula chromosome segments matching more than one L.
angustifolius genomic region (Fig. 3), which were inves-
tigated further using Strudel visualisation. Figure 5 shows
four of the clearest examples of M. truncatula chromosome
segments that each matched two or three regions of the L.
angustifolius genome. Figure 6 shows in detail one of the
triplicated regions on L. angustifolius NLL-07, NLL-08
and NLL-13 which corresponded to M. truncatula chromo-
some Mt4.

Discussion

The key finding of this study was the first ever observation
of duplicated and triplicated regions in the L. angustifolius
genome that were present as single copies in the M. trunca-
tula genome (Figs. 3, 5, 6). Such duplications and/or trip-
lications were observed on parts of most L. angustifolius

Mt3
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\
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llllll.lllllll.lilll

Mt5

NLL-06
NLL-07
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NLL-17
NLL-18

IIIIIIIIIIIIEII.II-I
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linkage groups, which points to WGD or WGT arising
from polyploidy event(s) rather than multiple independ-
ent duplications of single chromosomes. Not all of the L.
angustifolius genome showed clear duplication and/or trip-
lication; therefore, it is likely that the polyploidy event(s)
was ancient and subsequently chromosomes have under-
gone numerous rearrangements. The conclusion of ancient
polyploidy event(s) is supported by previously presented
evidence based on diversified genome size and chromo-
some numbers within the genus, isozyme and DNA marker
duplication, and duplicated genes in transcriptome and
genome survey sequences (Naganowska et al. 2003; Nelson
et al. 2006; Parra-Gonzalez et al. 2012; Wolko and Weeden
1989; Yang et al. 2013).

The timing of the inferred polyploidy event(s) remains
an open question. Based on the synteny-based analysis of
this study and the above-mentioned published studies, it
appears that at least one polyploidy event took place after
the divergence of Lupinus from M. truncatula and other
Papilionoid legumes around 56 million years ago (Lavin
et al. 2005). This question is being addressed in ongoing
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Fig. 6 An example of triplica-
tion in the Lupinus angustifolius
genome (on linkage groups
NLL-07, NLL-08 and NLL-

13) relative to one Medicago

truncatula chromosome (Mt4). NLL -08
Names of loci showing syntenic ~
regions are shown next to the -
L. angustifolius linkage groups
(scaled in Kosambi centiMor- ]
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megabases, Mb). NLL-07 and | //
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collaborative projects that are estimating the divergence
times of homoeologous gene sequences obtained from tran-
scriptomes of members of the Genistoid clade (C. Hughes,
G. Aitcheson, D. Filatov and M. Nelson, unpublished data)
and across the legume family (S. Cannon, unpublished
data). These ongoing analyses should provide more robust
inferences about the timing of polyploidy event(s) in Genis-
toid genome evolution. The identification of homoeologous
gene pairs would be aided by the availability of a high-
quality reference genome. The genome survey sequence of
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L. angustifolius recently reported (Yang et al. 2013) could
not resolve gene duplications, highlighting the need for the
high-quality reference genome sequence currently being
developed for L. angustifolius (Gao et al. 2011). The cur-
rent analysis will guide the sequence assembly of the L.
angustifolius reference genome as it navigates the com-
plexities of a polyploid genome. Owing to the accumulat-
ing genomic and transcriptomic data, L. angustifolius may
soon become the model genome for the other Genistoid
legume species.
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The updated reference genetic map of L. angustifolius
reported here comprised 1,207 loci, including 352 new,
high-quality DArT and PCR-based STS markers. These
new markers improved genome coverage with the num-
ber of unique framework loci increasing to 795 (Table 1)
compared to 637 in the previous reference map (Nelson
et al. 2010). The number of intervals >15 cM reduced
from 18 (Nelson et al. 2010) to 13 (Fig. 1) in the current
map. Intriguingly, three small clusters comprising markers
generated by diverse PCR, RFLP and DArT technologies
remained despite the increased marker density (Fig. 1).
These clusters may represent ends of chromosomes that
have low marker coverage, high recombination frequency,
structural rearrangements, or a combination of the above.
These chromosomal regions may present a challenge to
incorporate in the more comprehensive L. angustifolius
genome sequencing project that is currently underway
(Gao et al. 2011) and may require additional cytogenetic
analyses such as the BAC-FISH analysis developed by
Lesniewska et al. (2011).

The most significant technical advance in the new map
was the increased number of sequence-based markers (394)
used as bridging points for comparing the L. angustifolius
and M. truncatula genomes (Table S2). This was a substan-
tial increase over the 147 bridging points used in the previ-
ous synteny analysis between L. angustifolius and M. trun-
catula (Nelson et al. 2006). This, along with the availability
of an improved genome assembly of M. truncatula, per-
mitted a higher-resolution analysis of synteny between the
basal Papilionoid L. angustifolius with the model legume
M. truncatula. While the overall impression of high differ-
entiation between the two genomes remained unchanged
(Fig. 2), there were much clearer examples of marker col-
inearity between the two genomes (Figs. 4, 6) compared
to the previous study (Nelson et al. 2006). This improved
delineation of conserved gene order in the basal Papilio-
noid genome of L. angustifolius will guide the reconstruc-
tion of the ancestral genomes of cool season and warm sea-
son currently underway (D. Cook, pers. comm.).

Four trait loci (tardus, lentus, Lanrl and Ku) in the L.
angustifolius genetic map fell within, or closely adjacent
to, regions of conserved synteny with M. truncatula (Fig. 4,
Fig. S1). For example, the pod shattering gene Lentus on
linkage group NLL-08 was located in the synteny block
shared with Mtl (Fig. 4) as well as in a conserved block of
Lotus japonicus chromosome 5 (Nelson et al. 2010). It was
elsewhere reported that Mtl and Lj5 show synteny along
their entire lengths (Cannon et al. 2006), which brings fur-
ther strength to the possible synteny exploitation for iden-
tification of a candidate gene for Lentus. The region of L.
angustifolius NLL-10 containing the flowering time locus
Ku shared synteny with the region of M. truncatula Mt7
containing three F'T homologues, the floral integrator gene

encoding the florigen signal protein in plants (Turck et al.
2008). Intriguingly, the FT-derived marker dFTc showed no
recombination with Ku (Fig. 1; Table S1). Further research
is underway to determine if FT is indeed the gene underly-
ing the Ku locus or is instead another closely linked flower-
ing time gene such as CONSTANS (Pierre et al. 2011). If
FT is demonstrated to be the gene underlying the Ku locus,
this would be a strong validation of the synteny approach
for transferring genomic knowledge from a model genome
to a less well-resourced crop genome.
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